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Quantum response of finite Fermi systems and the relation of the Lyapunov exponent
to transport coefficients
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Within the frame of kinetic theory a response function is derived for finite Fermi systems that includes
dissipation in relaxation time approximation and a contribution from additional chaotic processes characterized
by the largest Lyapunov exponent. A generalized local density approximation is presented including the effect
of many particle relaxation and the additional chaotic scattering. For small Lyapunov exponents relative to the
product of wave vector and Fermi velocity, the largest Lyapunov exponent modifies the response in the same
way as the relaxation time. Therefore the transport coefficients can be connected with the largest positive
Lyapunov exponent in the same way as known from the transport theory in relaxation time approximation.

PACS numbse(s): 05.45-a, 05.20.Dd, 05.60.Cd, 05.70.Ln

The problem of irreversibility is one of the still open the same way as the relaxation time of the system. Therefore
questions. Two approaches basically can be distinct. Onall expressions known from kinetic theory, expressing the
approach considers the many particle theory as a suitabkansport coefficients in terms of the relaxation time, can be
starting point to understand the increase of entropy as a r&onsidered as an expression in terms of the Lyapunov expo-
sult of many random collisions leading to irreversible kinetic nent.
equations like the Boltzmann equation. The other approach The concept of response of an interacting many body sys-
considers the theory of deterministic chaos with the charact®m starts conveniently from the one-particle density distri-
teristic measure of Lyapunov exponent to understand the odution functionf(p,r.t) satisfying the appropriate kinetic
currence of irreversibility. While the many particle approach€duation. The space dependent density is then given by inte-
can be easily extended to quantum systems the quantuffation over momentum
chaos is still a matter of debate about the correct term. dp

If both approaches describe some facet of irreversibility, n(r,t):gf f(p,r,t), (1)
what we will anticipate in the following; it should be pos- (2mh)®

sible to give relations between them. While the characteristi\:Nhereg is the spin, isospin,..., degeneracy of the system. The
measure of mf:_m_y bodyheffeclts is the relaxatu?n t"ﬂe apd thﬁnearization of the kinetic equation fdryields the response
transport coefficients, the relevant measure for chaolic SyS, g external disturbance. First we discuss the semiclassical

tems is the Lyapunov exponent as a measure of phase spgeponse and generalize later to quantum response. The start-
spreading of trajectories. Considerable efforts have bee[p,g semiclassical kinetic equation reads

made to connect the transport coefficients with the Lyapunov

exponen{1—4]. In Refs.[1] and[4] the fact that the spread- p

ing of a small phase space volume is given by the sum of:f(P:F\)+ = f(p,r,t) = 3, (Vina(r, 1)

Lyapunov exponentssV(t)=6V(0)expEa)t, is used to

give a relation between Lyapunov exponents and viscosity. ()it )= fo(p,r)—f(p,r,t) ©

This was possible to show with the help of the contact to a ext [, 1))pT (P, T '

heat bath in the equation of motion ensuring constant internal . ) ) S

energy. In Refs[2] and[3] the relation between transport with f[he self-consistent mean.-flelgl poten.tlal given as a con-

coefficients and Lyapunov exponents was presented in termélution between the two-particle interactivfy and the den-

of Helfand’s moments. The interlink was possible to estabsity Vi,q=fdrVy(r,r)n(r,t), the external disturbanc¥ ey

lish by reinterpretation of the Helfand’'s moments as stochasand a typical relaxation time. The relaxation time approxi-

tic quantities such that the mean variance of the time derivamation serves here as the simplest form of collision integral

tives represents just the transport coefficients. In Rdfthe  to describe dissipative processes by internal collisions of the

authors derive a density expansion of largest Lyapunov exparticles.

ponent for hard sphere gases from a generalized Lorentz- Besides this chaotization by mutual collisions we want to

Boltzmann equation. This has demonstrated the intimate rediscuss in the following how additional chaotic processes,

lation between transport coefficients and dynamicale.g., caused by boundary conditions, surfaces etc., are influ-

quantities like the Lyapunov exponent. encing the response of the system to external perturbation
Here we like to show that there exists a simple connectiofV gy;.

between the concept of Lyapunov exponent and the dissipa- When the equatiorni2) is linearized with respect to the

tion leading to irreversibility for interacting Fermi systems. It external perturbation, the self-consistent poter¥ig) gives

will be shown that if the largest positive Lyapunov exponenta linear density contributio@n via 6V;,q=Vodn. Defining

is smaller than the product of Fermi velocity times wave-the total polarization function as the connection between in-

length in a Fermi system, the Lyapunov exponent appears iduced density variation and external perturbation
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5n(x,w)=J dX'TI(X,X",0) SVex( X', ), 3

one finds the relation between the polarization function in-

cluding the effect of the self-consistent potentidl, and the
polarization without self-consistent potentiél,., as

(%X ) =TT (x,x") + J dxdXTT (X, %) Vo (X ) TT(X,X').
(4)
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dp®
(27Hh)3

Ho(x,x’,w):—ngf dp2fo(p?Xx')

0 ., d
Xf dt’e "t ‘“Eﬁ(x’—x(t’)). (10

Further simplifications are possible if we focus on the ground
statef o(p?,x) = 0 (p?(x) — p?) of the Fermi system with the
local Fermi momentunp;(x). The modulus integration of
momentum can be carried out and the Kirzhnitz-formula

In other words it is sufficient to concentrate on the responséﬁﬂ appears

function I to an external potential without self-consistent

potentialV,4. The self-consistent responkEis then given
by the solution of the integral equatigd). The following
derivation oflIl, is adapted from Ref6].

Introducing the Lagrange picture by following the trajec-

tory x(t),p(t) of a particle in phase space

d p

a " m
. ®
ap: — xVext

we linearize the kinetic equation equati@) around the sta-
tionary state fy according to f(x,p,t)="f(x,p)
+ 8f(x,p,t)e" Y7 and obtain

d
&5f(x(t),p(t),t)= Ipf00x(t)Vext- (6)
This can be integrated to yield
0 = d
of(x,p,t)= —ZmJ dt’J dx’ﬁ

X S = X(t')dp2fo( PAX WX tH1).
(7)

Integrating ovelp, the density variatiodn caused by vary-
ing the external potential is obtained as

dp®
7 dp2fo(p?Xx')

oN(X,w)= —2ng dx’J 2k

0 -, )
XJ; dt/e—lt (w+I/T)VeXI(Xr,w)

xié(x’—x(t’)), (8)
dt’

whereg denotes the spin-isospin degeneracy. Comparing thﬁ:
expression(8) with the definition of the polarization function
IT, in Egs.(3) and(4), we are able to identify the polariza-

tion of finite systems including the relaxation time as

i
HT(x,x’,w)=H0(x,x’,w+; 9

with

Mo(xx' )= — %{5«’—@)
o Q
+iwfiodt’e_'t ‘”f %5(X’—X(t’))},

(11)

where the angular integration dfp remains asd(},,. This
formula represents the ideal free part and a contribution that
arises by the trajectorieqt) averaged over the direction at

the present timen,p;=mx(0). In principle, the knowledge

of the evolution of all trajectories is necessary to evaluate
this formula. Molecular dynamical simulations can perform
this task but it requires an astronomical amount of memory
to store all trajectories. Rather, we discuss two approxima-
tions, which will give us more insight into the physical pro-
cesses behind. First the most radical one shows how the local
density approximation emerges. In the next one we consider
the influence of chaotic scattering.

The local density approximation appears from Efyl)
when we perform two simplifications. Introducing Wigner
coordinateR=(x+x")/2, r=x—x" we have to assume

(1) gradient expansion

Pt ~pi(R)+O(dR); (12

R+r
2

(2) expansion of the trajectories to first order history

Pt

X' —x(t")~—r—t'x+0O(t'?)= —r—t’anp. (13

With these two assumptions we obtain from Efjl) after
trivial integrations

1”4 (q,R, ) = f dre ' g™ (r,R, @)
m R o0 . sin
:_L()[l‘f'lkf dye|ky yy '

47243 0
(14

herek=maw/(gp;(R)). This can be further integrated with
e help of

® . sin
f dye'kyTy =arctarfimk—i Rek) !
0

+ m[sgn(1+k)

i 1+k
=2iln| 7

+sgM1-Kk)]|imk_o0 (15
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?J FIG. 1. The dimensionless polarization func-
o tion I=—[mgp(R)/4m?H3][1+ikd(\ Kk, »)]
vs frequency forq=1/vg and two different
Lyapunov exponents. The upper panel shows the
real part and the lower the imaginary part®f
— O,(\0) The result(21), solid line, is plotted together with
— 3t 4+ 00 @ (@+i A) . the approximatiorf23), long dashed line. The re-
<} 0 sult without Lyapunov exponenid5) is plotted
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to yield the standard Lindhard resuf28) in the classical P [1—exp(—At")
limit X" =x(t' )~—f—mnp+ . (20
|nf g pf 1+k . . . .
o (4,pf,w)= 1-2kiIn 1k +ikar With this ansatz one derives from E(L1) instead of Eq.
(14) the result
gpr( )
X[sgn1+k)+sgnl-Kk)], (16) IL\(q,R,0)=— ———1+ik d
wherek=mw/(qp;). We recognize the ground-state result ky |fe/r-t
for infinite matter except that the Fermi momentyo(R) x| 1+ 37‘ ' (21)

has to be understood as a local quantity corresponding to
local densities so that we get with E@®) which for \—0 resembles exactly Eq14). The further in-
tegration could be given in terms of hypergeometric func-
(17 tions but this is omitted here.
With this formula(21) together with Eqs(9) and (4) we
have derived the main result of a polarization function in-

For extensions beyond the local density approximation see
Refs.[7] and[8]. Cluding the influence of many particle effects and additional

Now we focus on the influence of an additional chaoucih?r?t;fl prﬁﬁZS§|?ngﬂzrg§r:;Z?rieb¥;h§f Ig/af))ulgoi)izzonent
scattering, which will be caused e.g., by a surface boundary. Lind corg ared with the case wnhm?t Lva ur?ov exponent We
In order to investigate this effect we add to the regular mo- P yap P

see that an oscillating behavior is induced similar to the ef-
tion (13) a small irregular part\x

fect of an external electric fielf®].

X" =x(t’ )~—r—t’&n +AX. (18) For the condition

P (q,R,w) = '“f(q pf<R>w+

)\<qu1 (22)

The irregular part of the motipn we _specify in_the direction with v= p;/m the Fermi velocity and the wave vector we
of the current movement lasting a tindg and given by an  can use lim_...(1+a/x)*=exp(@) under the integral of Eq.
exponential increase in phase-space controlled by the largegt1) and the final integration is performed with the result of

Lyapunov exponenk. Therefore we can assum& <0] Eq. (17) but a complex shift
p¢n , . 1
Ax~ %At exd —\(t'—Ay)]+const. (19 H}':DA(q,R,w)=Hg‘f(q,pf(R),w+i Nt (23

Since we are looking for the largest Lyapunov exponent waNe obtain by this way just the known Matthiessen rule,
can take Eq(19) at the maximumA,=—1/\. Further, we which states that the damping mechanisms are additive in the
require, that in the case of vanishing Lyapunov exponent welampingl' = (1/7) +\.

should regain the regular motid3). We have for Eq(18) In Fig. 1 we compare the dimensionless integral of Eq.
therefore (21) for different approximations. The approximation of
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small x Lyapunov exponents which leads to the Matthiessenerive from Eq.(26) with the help of

rule averages the oscillating behavior and reproduces the
" 1 1
gross feature for the conditiaf22). sin —sp sin| —spy
Next we discuss the quantum response function and we if ds h P h /s
will see that all discussions outlined above can be straight S S

forward applied to the quantum response function. Instead of 2
the quasiclassical kinetic equati¢?) we start now from the _ w2ﬁ3[®(p2—( _ 9) )_ G)(pfz—
2

)

+ -
quantum kinetic equatiofiL0] f P35
1 dp’ S (27
af(p,r,t)+ Bar f(p,r,t)— .—f ds P 3{U(H— 5)
m I (27h) the quantum Lindhard result
s\l ..., fo(p,r)—f(p,r,t Io(q,R, @)
—U(r——”e’lhs(p _p)f(p’,r,t)z 0(p ) (p )'
2 T d
p
24 ~of
(29) g (2mh)?
with U=V, 4+ V. The gradient expansion it leads to hq\? ha\?
first order the quasiclassical expressi@n We follow now ( 2R _( _ _) )_( 2R) = ot — )
exactly the same linearization as above and introduce the PHR)~| P 2 Pr(R)—| P 2
Lagrange picture. The trajectories are now described instead X 7pq
of Eq. (5) by the following set ho— WHE
d p (28)
alm in local density approximation.
The ansatz about additional chaotic processes (E@).
d s s leads then to exactly the same expressi@8) under the
SmPZU r+3/- U(r 2), (25 condition(22) but with the quantum responé28) instead of
IFAS

where the arbitrary vectarshows the infinite possibilities of ~ We like to point out that this result has far reaching con-
trajectories by quantum fluctuations. The resulting polarizasequences. With the assumpti@®) we have shown by this
tion function for a finite quantum system reads now insteadvay that the linear response behavior is the same if dissipa-

of Eq. (9) tion comes from the relaxation time via collision processes in
. g dp many-particle theories or from the concept of chaotic pro-
Mo(x,x", w) = cesses characterized by the Lyapunov exponent. We can

273 3

m = (2mh) therefore state that for small Lyapunov exponent compared
1 1 to the product of wave vector and Fermi velocity in a many

sin(—sp) Sin(gﬂ%) particle system, the largest Lyapunov exponent behaves like

xf ds s s the relaxation time in the response function.

0

S Since the transport theory is well worked out to calculate

. S the transport coefficients in relaxation time approximation
X J dt’e‘”""&(x’ —Xx(t")— 5) . (26)  we can express by this way the transport coefficients in terms
- of the Lyapunov exponent alternatively. This illustrates the
mutual equivalence of the concept of Lyapunov exponent

Compared with Eq(10) we see that due to quantum fluctua- and dissipative processes in many-particle theories.

tions an additional integrationappears. Equatiof26) is the .

quantum generalization of the quasiclassical Kirzhnitz for- Pavel Lipavskyand Valav Sicka are thanked for many

mula (11) for the response function in finite systems. enlightening discussions and A. Dellafiore for bringing the
Applying now the same gradient approximati@8) we  Kirzhnitz formula to my attention.
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