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Quantum response of finite Fermi systems and the relation of the Lyapunov exponent
to transport coefficients

Klaus Morawetz
LPC-ISMRA, Boulevard Marechal Juin, 14050 Caen and GANIL, Boulevard Becquerel, 14076 Caen Cedex 5, France

~Received 12 March 1999; revised manuscript received 31 August 1999!

Within the frame of kinetic theory a response function is derived for finite Fermi systems that includes
dissipation in relaxation time approximation and a contribution from additional chaotic processes characterized
by the largest Lyapunov exponent. A generalized local density approximation is presented including the effect
of many particle relaxation and the additional chaotic scattering. For small Lyapunov exponents relative to the
product of wave vector and Fermi velocity, the largest Lyapunov exponent modifies the response in the same
way as the relaxation time. Therefore the transport coefficients can be connected with the largest positive
Lyapunov exponent in the same way as known from the transport theory in relaxation time approximation.

PACS number~s!: 05.45.2a, 05.20.Dd, 05.60.Cd, 05.70.Ln
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The problem of irreversibility is one of the still ope
questions. Two approaches basically can be distinct.
approach considers the many particle theory as a suit
starting point to understand the increase of entropy as a
sult of many random collisions leading to irreversible kine
equations like the Boltzmann equation. The other appro
considers the theory of deterministic chaos with the cha
teristic measure of Lyapunov exponent to understand the
currence of irreversibility. While the many particle approa
can be easily extended to quantum systems the quan
chaos is still a matter of debate about the correct term.

If both approaches describe some facet of irreversibil
what we will anticipate in the following; it should be pos
sible to give relations between them. While the characteri
measure of many body effects is the relaxation time and
transport coefficients, the relevant measure for chaotic
tems is the Lyapunov exponent as a measure of phase s
spreading of trajectories. Considerable efforts have b
made to connect the transport coefficients with the Lyapu
exponent@1–4#. In Refs.@1# and@4# the fact that the spread
ing of a small phase space volume is given by the sum
Lyapunov exponentsdV(t)5dV(0)exp((li)t, is used to
give a relation between Lyapunov exponents and viscos
This was possible to show with the help of the contact t
heat bath in the equation of motion ensuring constant inte
energy. In Refs.@2# and @3# the relation between transpo
coefficients and Lyapunov exponents was presented in te
of Helfand’s moments. The interlink was possible to est
lish by reinterpretation of the Helfand’s moments as stoch
tic quantities such that the mean variance of the time der
tives represents just the transport coefficients. In Ref.@5# the
authors derive a density expansion of largest Lyapunov
ponent for hard sphere gases from a generalized Lore
Boltzmann equation. This has demonstrated the intimate
lation between transport coefficients and dynami
quantities like the Lyapunov exponent.

Here we like to show that there exists a simple connec
between the concept of Lyapunov exponent and the diss
tion leading to irreversibility for interacting Fermi systems.
will be shown that if the largest positive Lyapunov expone
is smaller than the product of Fermi velocity times wav
length in a Fermi system, the Lyapunov exponent appear
PRE 611063-651X/2000/61~3!/2555~4!/$15.00
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the same way as the relaxation time of the system. There
all expressions known from kinetic theory, expressing
transport coefficients in terms of the relaxation time, can
considered as an expression in terms of the Lyapunov ex
nent.

The concept of response of an interacting many body s
tem starts conveniently from the one-particle density dis
bution function f (p,r ,t) satisfying the appropriate kineti
equation. The space dependent density is then given by
gration over momentum

n~r ,t !5gE dp

~2p\!3
f ~p,r ,t !, ~1!

whereg is the spin, isospin,..., degeneracy of the system. T
linearization of the kinetic equation forf yields the response
to an external disturbance. First we discuss the semiclas
response and generalize later to quantum response. The
ing semiclassical kinetic equation reads

] t f ~p,r ,t !1
p

m
] r f ~p,r ,t !2] r„Vind~r ,t !

1Vext~r ,t !…]pf ~p,r ,t !5
f 0~p,r !2 f ~p,r ,t !

t
, ~2!

with the self-consistent mean-field potential given as a c
volution between the two-particle interactionV0 and the den-
sity Vind5*dr̄V0(r , r̄ )n( r̄ ,t), the external disturbanceVext
and a typical relaxation timet. The relaxation time approxi-
mation serves here as the simplest form of collision integ
to describe dissipative processes by internal collisions of
particles.

Besides this chaotization by mutual collisions we want
discuss in the following how additional chaotic process
e.g., caused by boundary conditions, surfaces etc., are i
encing the response of the system to external perturba
Vext.

When the equation~2! is linearized with respect to the
external perturbation, the self-consistent potentialVind gives
a linear density contributiondn via dVind5V0dn. Defining
the total polarization function as the connection between
duced density variation and external perturbation
2555 ©2000 The American Physical Society
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2556 PRE 61KLAUS MORAWETZ
dn~x,v!5E dx8P~x,x8,v!dVext~x8,v!, ~3!

one finds the relation between the polarization function
cluding the effect of the self-consistent potential,P, and the
polarization without self-consistent potential,Pt , as

P~x,x8!5Pt~x,x8!1E dx̄dx̄̄Pt~x,x̄!V0~ x̄, x̄̄!P~ x̄̄,x8!.

~4!

In other words it is sufficient to concentrate on the respo
function Pt to an external potential without self-consiste
potentialVind . The self-consistent responseP is then given
by the solution of the integral equation~4!. The following
derivation ofPt is adapted from Ref.@6#.

Introducing the Lagrange picture by following the traje
tory x(t),p(t) of a particle in phase space

d

dt
x5

p

m
,

~5!
d

dt
p52]xVext

we linearize the kinetic equation equation~2! around the sta-
tionary state f 0 according to f (x,p,t)5 f 0(x,p)
1d f (x,p,t)e2t/t and obtain

d

dt
d f „x~ t !,p~ t !,t…5]pf 0]x(t)Vext. ~6!

This can be integrated to yield

d f ~x,p,t !522mE
2`

0

dt8E
2`

`

dx8
d

dt8

3d„x82x~ t8!…]p2f 0~p2,x8!Vext~x8,t1t8!.

~7!

Integrating overp, the density variationdn caused by vary-
ing the external potential is obtained as

dn~x,v!522mgE dx8E dp3

~2p\!3
]p2f 0~p2,x8!

3E
2`

0

dt8e2 i t 8(v1 i /t)Vext~x8,v!

3
d

dt8
d„x82x~ t8!…, ~8!

whereg denotes the spin-isospin degeneracy. Comparing
expression~8! with the definition of the polarization function
Pt in Eqs.~3! and ~4!, we are able to identify the polariza
tion of finite systems including the relaxation time as

Pt~x,x8,v!5P0S x,x8,v1
i

t D ~9!

with
-

e

e

P0~x,x8,v!522mgE dp3

~2p\!3
]p2f 0~p2,x8!

3E
2`

0

dt8e2 i t 8v
d

dt8
d„x82x~ t8!…. ~10!

Further simplifications are possible if we focus on the grou
statef 0(p2,x)5Q„pf

2(x)2p2
… of the Fermi system with the

local Fermi momentumpf(x). The modulus integration o
momentum can be carried out and the Kirzhnitz-formu
@6,7# appears

P0~x,x8,v!52
mgpf~x!

4p2\3 Fd„x82x~0!…

1 ivE
2`

0

dt8e2 i t 8vE dVp

4p
d„x82x~ t8!…G ,

~11!

where the angular integration ofdp remains asdVp . This
formula represents the ideal free part and a contribution
arises by the trajectoriesx(t) averaged over the direction a
the present timenppf5mẋ(0). In principle, the knowledge
of the evolution of all trajectories is necessary to evalu
this formula. Molecular dynamical simulations can perfor
this task but it requires an astronomical amount of mem
to store all trajectories. Rather, we discuss two approxim
tions, which will give us more insight into the physical pro
cesses behind. First the most radical one shows how the l
density approximation emerges. In the next one we cons
the influence of chaotic scattering.

The local density approximation appears from Eq.~11!
when we perform two simplifications. Introducing Wigne
coordinatesR5(x1x8)/2, r5x2x8 we have to assume

~1! gradient expansion

pf S R1
r

2D'pf~R!1O~]R!; ~12!

~2! expansion of the trajectories to first order history

x82x~ t8!'2r2t8ẋ1O~ t82!52r2t8
pf

m
np . ~13!

With these two assumptions we obtain from Eq.~11! after
trivial integrations

P0
LDA~q,R,v!5E dr e2 iqr P0

LDA~r ,R,v!

52
mgpf~R!

4p2\3 H 11 ikE
0

`

dy eiky
siny

y J ,

~14!

wherek5mv/„qpf(R)…. This can be further integrated wit
the help of

E
0

`

dyeiky
siny

y
5arctan~ Im k2 i Rek!21

52i lnS 11k

12kD1p@sgn~11k!

1sgn~12k!#u Im k→0 ~15!
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FIG. 1. The dimensionless polarization fun
tion P52@mgpf(R)/4p2\3#@11 ikF(l,k,v)#
vs frequency for q51/vF and two different
Lyapunov exponents. The upper panel shows
real part and the lower the imaginary part ofF.
The result~21!, solid line, is plotted together with
the approximation~23!, long dashed line. The re
sult without Lyapunov exponents~15! is plotted
as well for comparison, dotted line.
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to yield the standard Lindhard result~28! in the classical
limit

P0
inf~q,pf ,v!52

mgpf

4p2\3 H 122k lnS 11k

12kD1 ikp

3@sgn~11k!1sgn~12k!#J , ~16!

wherek5mv/(qpf). We recognize the ground-state res
for infinite matter except that the Fermi momentumpf(R)
has to be understood as a local quantity correspondin
local densities so that we get with Eq.~9!

Pt
LDA~q,R,v!5P0

infS q,pf~R!,v1
i

t D . ~17!

For extensions beyond the local density approximation
Refs.@7# and @8#.

Now we focus on the influence of an additional chao
scattering, which will be caused e.g., by a surface bound
In order to investigate this effect we add to the regular m
tion ~13! a small irregular partDx

x82x~ t8!'2r2t8
pf

m
np1Dx. ~18!

The irregular part of the motion we specify in the directi
of the current movement lasting a timeD t and given by an
exponential increase in phase-space controlled by the lar
Lyapunov exponentl. Therefore we can assume@ t8,0#

Dx'
pfnp

m
D t exp@2l~ t82D t!#1const. ~19!

Since we are looking for the largest Lyapunov exponent
can take Eq.~19! at the maximumD t521/l. Further, we
require, that in the case of vanishing Lyapunov exponent
should regain the regular motion~13!. We have for Eq.~18!
therefore
t

to

e

y.
-

est

e

e

x82x~ t8!'2r2
pf

m
npF12exp~2lt8!

l G . ~20!

With this ansatz one derives from Eq.~11! instead of Eq.
~14! the result

Pl~q,R,v!52
mgpf~R!

4p2\3 F11 ikE
0

`

dy
siny

y

3S 11
ky

v
l D iv/l21G , ~21!

which for l→0 resembles exactly Eq.~14!. The further in-
tegration could be given in terms of hypergeometric fun
tions but this is omitted here.

With this formula~21! together with Eqs.~9! and ~4! we
have derived the main result of a polarization function
cluding the influence of many particle effects and additio
chaotic processes characterized by the Lyapunov expo
l. In Fig. 1 the dimensionless integral of Eq.~21! is plotted
and compared with the case without Lyapunov exponent.
see that an oscillating behavior is induced similar to the
fect of an external electric field@9#.

For the condition

l!qvF , ~22!

with v f5pf /m the Fermi velocity andq the wave vector we
can use limx→`(11a/x)x5exp(a) under the integral of Eq.
~21! and the final integration is performed with the result
Eq. ~17! but a complex shift

Pl
LDA~q,R,v!5P0

infXq,pf~R!,v1 i S l1
1

t D C. ~23!

We obtain by this way just the known Matthiessen ru
which states that the damping mechanisms are additive in
dampingG5(1/t)1l.

In Fig. 1 we compare the dimensionless integral of E
~21! for different approximations. The approximation o
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small x Lyapunov exponents which leads to the Matthies
rule averages the oscillating behavior and reproduces
gross feature for the condition~22!.

Next we discuss the quantum response function and
will see that all discussions outlined above can be stra
forward applied to the quantum response function. Instea
the quasiclassical kinetic equation~2! we start now from the
quantum kinetic equation@10#

] t f ~p,r ,t !1
p

m
] r f ~p,r ,t !2

1

i E ds
dp8

~2p\!3 FUS r1
s

2D
2US r2

s

2D Gei /\s(p82p) f ~p8,r ,t !5
f 0~p,r !2 f ~p,r ,t !

t
,

~24!

with U5Vind1Vext. The gradient expansion inU leads to
first order the quasiclassical expression~2!. We follow now
exactly the same linearization as above and introduce
Lagrange picture. The trajectories are now described ins
of Eq. ~5! by the following set

d

dt
x5

p

m
,

s
d

dt
p5US r1

s

2D2US r2
s

2D , ~25!

where the arbitrary vectors shows the infinite possibilities o
trajectories by quantum fluctuations. The resulting polari
tion function for a finite quantum system reads now inste
of Eq. ~9!

P0~x,x8,v!5
g

p2\3E dp

~2p\!3

3E ds

sinS 1

\
spD

s
]s
S sinS 1

\
spf D

s
D

3E
2`

0

dt8e2 i t 8vdS x82x~ t8!2
s

2D . ~26!

Compared with Eq.~10! we see that due to quantum fluctu
tions an additional integrations appears. Equation~26! is the
quantum generalization of the quasiclassical Kirzhnitz f
mula ~11! for the response function in finite systems.

Applying now the same gradient approximation~13! we
-
in
6

n
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derive from Eq.~26! with the help of

i E ds

sinS 1

\
spD

s
]s
S sinS 1

\
spf D

s
D ei1/2qs

5p2\3FQXpf
22S p2

q

2D 2C2QXpf
22S p1

q

2D 2CG
~27!

the quantum Lindhard result

P0~q,R,v!

5gE dp

~2p\!3

3

QXpf
2~R!2S p2

\q

2 D 2C2QXpf
2~R!2S p1

\q

2 D 2C
\v2

\pq

m
1 i e

~28!
in local density approximation.

The ansatz about additional chaotic processes Eq.~20!
leads then to exactly the same expression~23! under the
condition~22! but with the quantum response~28! instead of
P0

inf .
We like to point out that this result has far reaching co

sequences. With the assumption~22! we have shown by this
way that the linear response behavior is the same if diss
tion comes from the relaxation time via collision processes
many-particle theories or from the concept of chaotic p
cesses characterized by the Lyapunov exponent. We
therefore state that for small Lyapunov exponent compa
to the product of wave vector and Fermi velocity in a ma
particle system, the largest Lyapunov exponent behaves
the relaxation time in the response function.

Since the transport theory is well worked out to calcula
the transport coefficients in relaxation time approximati
we can express by this way the transport coefficients in te
of the Lyapunov exponent alternatively. This illustrates t
mutual equivalence of the concept of Lyapunov expon
and dissipative processes in many-particle theories.

Pavel Lipavsky´ and Václav Špička are thanked for many
enlightening discussions and A. Dellafiore for bringing t
Kirzhnitz formula to my attention.
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